
Solution - Oscillating rope

A) It is evident from the figure that the curvature of the rope in the fundamental vibration is
very small. It infers for a possibility to model the fundamental vibration as a swinging of a rigid
uniform rod of length L about a pivot point at its end. The moment of inertia of the rod is:
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and the distance from the center-of-mass to the pivot point is:

b = L/2

Therefore, the frequency of the fundamental vibration is approximated as:
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≈ 0.61 Hz

Correspondingly, the period of the fundamental vibration is:
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≈ 1.6 s

B) Whatever model for estimating of f1 is being used, one may deduce on the basis of dimensionality
arguments that the k-th natural frequency of the rope is:
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where ck is a dimensionless numeric coefficient depending on the consecutive mode number k only.
Let A and B be the suspension point and the free end of the rope respectively, and N be the node
on the rope for the second natural vibration (see the figure).



Since the node point is at rest (in the small-amplitude approximation), the vibration of the part
NB could be considered as a fundamental vibration of a rope of length LNA about a suspension
point N . Therefore:

f2(L) ≡ f1(L−NA)

Hence one may write:
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Since the absolute displacement is much smaller than the length of the rope, the distances could
be measured in a vertical direction, to the ceiling, instead along the rope. Therefore, by taking
L = 1 m, and NA ≈ 0.8 m, we obtain:

f2
f1

≈ 2.2

Similarly, the vibration of the part N1B in the third eigenmode is equivalent to the second natural
vibration of a rope of length L−N1A ≈ 0.4 m. In analogy to the first case:

f3(L) ≡ f2(L−NA)

and
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≈ 1.6

Therefore:
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≈ 3.5

Finally:

f1 : f2 : f3 ≈ 1 : 2.2 : 3.5




