Solution - Disk in gas

The initial pressure on the thermal insulating layer is $P_{0}=n k_{B} T_{0}$, where n is number density of the gas. It originates from multiplying the flux $j_{0} \propto v_{x 0}$ and momentum that one molecule transfers $p_{0}=2 m v_{x 0}$ (elastic collision), where $v_{x 0}$ is the normal component of molecule's velocity, and taking the average $\left(\overline{2 v_{x 0}^{2}} \propto T_{0}\right)$. When applying the same idea to the surface with good thermal contact, we find out that the flux remains the same, although the momentum increases:

$$
p_{1}=m\left(v_{x 0}+v_{x 1}\right) \approx m v_{x 1},
$$

where $v_{x 1}$ is the normal velocity component of the molecule flying away from the disk. Thus for pressure P_{1} :

$$
\frac{P_{1}}{P_{0}}=\frac{\overline{v_{x 0} v_{x 1}}}{\overline{2 v_{x 0}^{2}}} \approx \frac{\sqrt{T_{1} T_{0}}}{T_{0}}
$$

which is correct to some numerical coefficient of the order of one.
The net force acting on the disk:

$$
F=\left(P_{1}-P_{0}\right) S \approx S n k_{B} \sqrt{T_{0} T_{1}},
$$

and then the initial acceleration:

$$
a_{0} \approx \frac{S n k_{B}}{M} \sqrt{T_{0} T_{1}}=\frac{S \rho k_{B}}{m M} \sqrt{T_{0} T_{1}} .
$$

Since $P_{1} \gg P_{0}$, the disk will accelerate until its speed becomes of the order of average gas molecules speed. After the velocity v of the disc becomes on the order of $v_{0}=\sqrt{k_{B} T_{0} / m}$, the flux of molecules reaching the backside $j(v)$ decays faster than exponentially due to the nature of the molecular velocity distribution in the ideal gas (for example, $j\left(2 v_{0}\right) \approx 10^{-3} j_{0}$ and $\left.j\left(3 v_{0}\right) \approx 10^{-6} j_{0}\right)$. That leads to a proportional decrease in a propelling pressure P_{1}. In order to compensate for an initial bias $\sqrt{T_{1} / T_{0}} \approx 30$, it will take around a factor of one on the velocity of the disk. Therefore the maximum velocity of the disk:

$$
v_{\max } \approx v_{0}=\sqrt{\frac{k_{B} T_{0}}{m}}
$$

Here we assumed that the disk will not cool close to T_{0} before it reaches the maximum velocity. Let us show it. The acceleration time is approximately:

$$
t_{a} \approx \frac{v_{\max }}{a_{0}} \approx \frac{M \sqrt{m k_{B} T_{O}}}{S \rho k_{B} \sqrt{T_{0} T_{1}}}=\frac{M}{\rho S} \sqrt{\frac{m}{k_{B} T_{1}}}
$$

Since the power of heat removal $P_{t h}$ is maximal at the beginning (at zero velocity), we can upper-bound estimate the time for the disk to cool as $t_{c}=Q / P_{t h}$, where Q is the total heat of the disk. The initial thermal power of heat removal can be estimated as:

$$
P_{t h} \approx S j_{0} \times k_{B} T_{1} \approx S n k_{B} \sqrt{T_{0} T_{1}} \sqrt{\frac{k_{B} T_{1}}{m}}
$$

and the total heat $Q \approx N k_{B} T_{1}$. Given $M \approx N m$, we obtain:

$$
t_{c} \approx \frac{(M / m) k_{B} T_{1}}{S n k_{B} T_{1} \sqrt{k_{B} T_{0} / m}}=\frac{M}{\rho S} \sqrt{\frac{m}{k_{B} T_{0}}}
$$

Finally, $t_{a} / t_{c} \approx \sqrt{T_{0} / T_{1}} \ll 1$, and indeed disk will not cool significantly before it reaches the velocity about v_{0}.

Grading scheme. Indented lines show partial points for partially correct solutions

Initial acceleration (5 pts)

$$
\begin{aligned}
& P_{0}=n k T=j_{0} \times \Delta p_{0}, \Delta p_{0}=2 m v_{x 0} \\
& 2 \text { pts }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta p_{1}=m v_{x 1}, P_{1} \approx n k \sqrt{T_{0} T_{1}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .2 \text { pts } \\
& P_{1}=n k T_{1} \text {, no points for } a_{0} \text { further } \ldots \ldots \ldots .1 \text { pts } \\
& \text { only } \Delta p_{1}=m v_{x 1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 \text { pts }
\end{aligned}
$$

if some slight mistake........................... 0.5 pts
Special rule
if $\left\langle v_{x 0}\right\rangle=\sqrt{3 k_{B} T / m}$ (student doesn't understand the difference between velocity of the molecule and the component of the velocity) $-0.5 \mathrm{pts}$

Maximal velocity (4 pts)

P_{1} and P_{0} depend on the velocity of the disk, P_{1} drops significantly if $v \approx v_{0}$, thus $v_{\max } \approx v_{0} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .4$ pts
$P_{0}^{\prime} \approx \rho v^{2}$, but P_{1} stays the same, thus $v_{\max } \approx$
$v_{0} \sqrt{T_{1} / T_{0}} \ldots . .2$ pts
Student understands that at least some pressure de-
pends on the velocity of the disk............. 1 pts
The velocity is maximal when disk cools to $T_{0} 0 \mathrm{pts}$

Justification of slow cooling (1 pts)

Estimation of times t_{a} and t_{c} given................. 1 pts
Student explicitly writes that $T_{1}^{\prime} \approx T_{1}$ but doesn't prove it 0.5 pts

