Solution - Staircase

A Since $n=-y / h=(x / \lambda)^{2 / 3}, x(n)=n^{2 / 3} \lambda$. The distance between the steps is:

$$
d_{n}=x(n+1)-x(n)=\approx \frac{d x}{d n}=\frac{2}{3} \lambda n^{-1 / 3}=n^{-1 / 3} \cdot 30 \mu \mathrm{~m}
$$

B Equilibrium energy value, being minimum, must be stable against small perturbations of the crystal shape. Allowed are perturbations which conserve the total volume of the crystal. In other words a small horizontal displacement of one step must be accompanied by an equal and opposite displacement of another step.
The energy change $\varepsilon_{n}(\delta)$ associated with a small horizontal displacement δ of the n-th step is:

$$
\varepsilon_{n}(\delta)=\mu\left(\left(d_{n}+\delta\right)^{\nu}-d_{n}^{\nu}+\left(d_{n+1}+\delta\right)^{\nu}-d_{n+1}^{\nu}\right) \approx \mu \nu\left(d_{n}^{\nu-1}-d_{n+1}^{\nu-1}\right) \delta .
$$

In order for $\varepsilon_{n}(\delta)+\varepsilon_{m}(-\delta)$ to be zero for arbitrary n and m it is necessary to require that the factor in the parentheses does not depend on n :

$$
d_{n}^{\nu-1}-d_{n+1}^{\nu-1}=\text { const. }
$$

Substituting $d \propto n^{-1 / 3}$, we get ${ }^{1}$:

$$
\begin{gathered}
n^{(1-\nu) / 3}-(n+1)^{(1-\nu) / 3} \approx \frac{1-\nu}{3} n^{\frac{1-\nu}{3}-1}=\mathrm{const}, \\
\frac{1-\nu}{3}-1=0 \Longrightarrow \nu=-2
\end{gathered}
$$

The interaction energy corresponds to that of two dipoles in 2D:

$$
E(d) \propto \frac{1}{d^{2}} .
$$

[^0]
[^0]: ${ }^{1}$ Trivial solutions $\nu=0$ and $\nu=1$ imply that the total energy within given constraints does not depend on the shape of the crystal.

