## Solenoid and loop

A closed circular loop of radius r consists of an ideal battery of electromotive force  $\xi$  and a wire of resistance R. A long thin air-core solenoid is aligned with the axis of the loop (z-axis). Its length is  $l \gg r$ , cross-sectional area is  $A\left(r \gg \sqrt{A}\right)$ , and the number of turns is N. The solenoid is powered by a constant current I provided by an ideal current source. The directions of the currents in the solenoid and in the loop are the same (clockwise in the figure).



- a) Find the force  $F_1$  acting on the solenoid when its head  $O_1$  is positioned in the loop centre O. What is the force  $F_2$  acting on the solenoid when its tail  $O_2$  is located in the centre of the loop?
- b) Suppose now, that the solenoid is moving slowly with a constant velocity v along z-axis starting far away from the loop, going past its centre, and proceeding further to the right in positive z-direction. Plot the current J flowing in the loop as a function of time. Highlight important features and values on the graph. The velocity v is so small that self inductance of the loop can be neglected.